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Abstract Multivalued equilibrium problems in general metric spaces are considered.
Uniqueness and Hölder continuity of the solution are established under Hölder conti-
nuity and relaxed Hölder-related monotonicity assumptions. The assumptions appear
to be weaker and the inclusion to be properly stronger than that of the recent results in
the literature. Furthermore, our theorems include completely some known results for
variational inequalities in Hilbert spaces, which were demonstrated via geometrical
techniques based on the orthogonal projection in Hilbert spaces and the linearity of
the canonical pair 〈., .〉.

Keywords Metric spaces · Multivalued equilibrium problems · Hölder properties ·
Variational inequalities · Fixed point and coincidence point problems · Vector
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1 Introduction

Sensitivity analysis and stability of solutions are of the great importance in optimi-
zation theory and applications. The equilibrium problem is a problem setting, which
includes many optimization-related problems such as variational inequalities, math-
ematical programming problems, vector optimization, fixed point and coincidence
point problems, Nash equilibrium problems, complementarity problems, traffic net-
work equilibria, and the like. There have been numerous papers devoted to the
solution existence and uniqueness of equilibrium problems and their generalizations
(see, e.g., Blum and Oettli 1994; Noor and Oettli 1994; Bianchi et al. 1997; Chadli and
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Riahi 2000; Ansari et al. 2001; Lin et al. 2003; Hai and Khanh 2006, 2006, in press;
Khanh et al. 2006, etc. and the references therein). However, we observe rather
few works in the literature on the sensitivity analysis for equilibrium problems. Muu
(1984), Bianchi and Pini (2003), and Anh and Khanh (2004, 2006, 2006, in press) con-
sider semicontinuity of the solution sets. The Hölder continuity of the unique solution
is investigated in Bianchi and Pini (2003) for the scalar single-valued case and Anh
and Khanh (2006) for vector multivalued equilibrium problems. These papers extend
the results of Yen (1995) and Yen and Lee (1997) for variational inequalities in Hil-
bert spaces to equilibrium problems in metric spaces. However, when applied to this
special case of variational inequalities, these extended results become weaker than the
original ones, which were established via employing the orthogonal projection of the
Hilbert space and the linearity of the canonical pairing 〈., .〉 involved in the variational
inequality. Inspired by the general observation on many sensitivity results that, in
return for a stability property of the solutions, the same property have to be assumed
on the data of the problem under consideration, we try to find out assumptions of the
Hölder continuity kind, which relate the metric-space variable and parameters of the
problem (in metric spaces) to replace the Hilbert-space structure and the linearity
structure of the variational inequality problem in ensuring a stability result which
completely includes Yen’s result when applied to variational inequalities. It appears
that aiming this goal we finally obtain in this note a remarkable improvement of the
results in Bianchi and Pini (2003) and Anh and Khanh (2006) which becomes properly
stronger than the Yen’s result, when applied to variational inequalities.

The organization of the paper is as follows. The rest of this section is devoted
to the problem statement and some preliminaries. In Sect. 2, we establish the main
results and provide corollaries and examples to compare with known recent results.
Applications to fixed point and coincidence point problems, vector optimization and
especially to variational inequalities are presented in Sect. 3.

Our notations are almost standard. We use ‖.‖ and d(., .) for the norm and dis-
tance in any normed space and metric space (the context makes it clear what space is
encountered). d(x, A) is the distance from x to subset A in X. For a normed space X,
X∗ is the topological dual and 〈., .〉 is the canonical pair. R+ is the set of nonnegative
real numbers. B(x, r) denotes the closed ball of radius r ≥ 0 and centered at x in a
metric space X. intC stands for the interior of a subset C.

Let, throughout the paper if not otherwise specified, X, Z, Λ, M, and N be metric
spaces, Y be a metric linear space and K: Λ → 2X be a multifunction with nonempty
values. Let C ⊆ Y have intC �= ∅. Let A: X × N → 2Z and F: X × X × Z × M → 2Y

be multifunctions. For each λ ∈ Λ, µ ∈ M, and η ∈ N consider the following two
equilibrium problems:

(EP): Find x̄ ∈ K(λ) and x̄∗ ∈ A(x̄, η) such that, for each y ∈ K(λ),

F(x̄, y, x̄∗, µ) ∩ (Y\ − intC) �= ∅.

(SEP): Find x̄ ∈ K(λ) and x̄∗ ∈ A(x̄, η) such that, for each y ∈ K(λ),

F(x̄, y, x̄∗, µ) ⊆ Y\ − intC.

Observe that if F(x, y, x∗, µ) ≡ f (y, x∗, µ) and A is single-valued functions, with
f: X × Z × M → Y being single-valued mapping, then two problems (EP) and (SEP)
collapse to the implicit vector equilibrium problem considered by many authors. We
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include A(x, η) in this problem setting so that the problems are easier to be explained
containing particular cases (see Sects. 3.3 and 3.4).

Recall first some Hölder-related notions.

Definition 1.1

(1) (Classical notion) A multifunction G: Λ → 2X is said to be l.α—Hölder at λ0 if
there exists a neighborhood U of λ0 such that, ∀λ1, λ2 ∈ U,

G(λ1) ⊆ G(λ2) + lB(0, dα
(
λ1, λ2)

)
.

(2) (see Anh and Khanh 2006) G: X × X → 2Y is called h.β—Hölder-strongly
pseudomonotone of the first type in S ⊆ X if, ∀x, y ∈ S, x �= y,

G(x, y) �⊆ −intC �⇒ G(y, x) + hB
(
0, dβ(x, y)

) ⊆ −C, (1)

where h ≥ 0 and β > 0. G is called h.β—Hölder-strongly pseudomonotone of
the second type if (1) is replaced by

G(x, y) ⊆ Y\−intC �⇒ G(y, x) + hB
(
0, dβ(x, y)

) ⊆ −C.

In the sequel the following Hölder-related assumptions will be essential for con-
sidering problem (EP) and (SEP):

For the reference point (λ0, µ0, η0) ∈ Λ × M × N, there are neighborhoods U(λ0),
V(µ0), and W(η0) of λ0, µ0, and η0, respectively, such that

(A1) ∀λ ∈ U(λ0), ∀µ1, µ2 ∈ V(µ0), ∀x, y ∈ K(λ): x �= y, ∀x∗
1, x∗

2 ∈ A
(
K(λ), W(η0)

)
,

F(x, y, x∗
1, µ1) ⊆ F(x, y, x∗

2, µ2) + mB
(

0, dθ (x, y)
(
dζ (x∗

1, x∗
2) + dγ (µ1, µ2)

))
,

where m > 0, θ ≥ 0, ζ ≥ 0, and γ > 0;

(A2a) ∀µ ∈ V(µ0), ∀η ∈ W(η0), ∀x, y ∈ K
(
U(λ0)

)
: x �= y,

hdβ(x, y) ≤ inf
x∗∈A(x,η)

inf
g∈F(x,y,x∗,µ)

d(g, Y\−intC)

+ inf
y∗∈A(y,η)

inf
f∈F(y,x,y∗,µ)

d(f , Y\−intC), (2)

where h > 0, β > θ .

(A2b) is (A2a) with (2) replaced by

hdβ(x, y) ≤ inf
x∗∈A(x,η)

sup
g∈F(x,y,x∗,µ)

d(g, Y\−intC)

+ inf
y∗∈A(y,η)

sup
f∈F(y,x,y∗,µ)

d(f , Y\−intC). (3)

Remark 1.1 These assumptions look seemingly complicated. But they are not hard
to be checked as shown by numerous examples below. We now make their meanings
clearer.

(1) Assumption (A1) incorporates Hölder continuity with respect to state variables
x, y and to parameter µ (in connection also with parameters λ and η). It appears
that to ensure our Hölder continuity results for the solutions to (EP) and (SEP)
to include properly the mentioned result for variational inequalities in Hilbert
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spaces of Yen (1995), this natural condition can replace particular orthogonal-
ity and linearity of variational inequalities in Hilbert spaces (see Theorem 2.1).
Note also that Hölder-related assumptions in Bianchi and Pini (2003) and Anh
and Khanh (2006) are imposed separately in x, y and in parameters.

(2) To explain Assumption (A2a, b) we consider a single-valued real function
(without parameters) f : X × X → R for the sake of simplicity. Then both
(a) and (b) collapse to an assumption of the form: ∀x, y ∈ K ⊆ X: x �= y,

hdβ(x, y) ≤ d
(
f (x, y), R+

) + d
(
f (y, x), R+

)
. (4)

We have the following relation.

Proposition 1.1

(1) If f : X × X → R satisfies (4) then f is h.β—Hölder-strongly pseudomonotone
in K(the two types defined in Definition 1.1 coincide in this case). Conversely, if
f is h.β—Hölder-strongly pseudomonotone in K and quasimonotone in K (see
Bianchi and Schaible 1996), i.e. ∀x, y ∈ K : x �= y, f (x, y) < 0 �⇒ f (y, x) ≥ 0,
then f satisfies (4).

(2) If f : X × X → R is h.β—Hölder-strongly monotone in K ⊆ X (see Anh and
Khanh 2006), i.e. ∀x, y ∈ K : x �= y,

f (x, y) + f (y, x) + hdβ(x, y) ≤ 0,

then f satisfies (4).

Proof

(1) If f (x, y) ≥ 0, then d
(
f (x, y), R+

) = 0 and (4) implies that d
(
f (y, x), R+

) =
−f (y, x) and

f (y, x) + hB
(
0, dβ(x, y)

) ⊆ −R+.

For the converse, assume first that f (x, y) ≥ 0. Then the assumed pseudomonot-
onicity one has

hdβ(x, y) ≤ −f (y, x) = d
(
f (x, y), R+

) + d
(
f (y, x), R+

)
.

Next, if f (x, y) < 0 then f (y, x) ≥ 0 by the quasimonotonicity. Hence

hdβ(x, y) ≤ −f (y, x) = d
(
f (x, y), R+

) + d
(
f (y, x), R+

)
.

(2) By the assumption one has

hdβ(x, y) ≤ −f (x, y) − f (y, x) ≤ d
(
f (x, y), R+

) + d
(
f (y, x), R+

)
.

��
The following examples interpret the lacking implications in Proposition 1.1.

Example 1.1 Let X = R, K = [1, 2] and f (x, y) = − x
y . Then f satisfies (4) with

h = β = 1. But f (x, y) < 0, ∀x, y ∈ K, and hence f is not quasimonotone in K.
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Example 1.2 Let X = R, K = [0, 1] and f (x, y) = y−x
1+x . Then it is easy to see that f

satisfies (4) with h = 1
2 , β = 1. (f is also quasimonotone and 1

2 .1—Hölder-strongly
pseudomonotone). But, ∀x, y ∈ K,

f (x, y) + f (y, x) = (x − y)2

(1 + x)(1 + y)
≥ 0

and hence f is not 1
2 .1—Hölder-strongly monotone in K.

2 Main results

Theorem 2.1 For problem (EP) assume that solutions exist in a neighborhood of the
considered point (λ0, µ0, η0) ∈ Λ × M × N and Assumptions (A1) and (A2a) are
satisfied. Assume further that

(1) K(.) is l.α−Hölder at λ0;
(2) ∀(λ, µ, η) ∈ U(λ0) × V(µ0) × W(η0), ∀x ∈ K(λ), ∀x∗ ∈ A(x, η), F(x, ., x∗, µ) is

n.δ—Hölder in K
(
U(λ0)

)
;

(3) ∀λ ∈ U(λ0), ∀x ∈ K(λ), A(x, .) is p.ξ−Hölder at η0.

Then, in a neighborhood of (λ0, µ0, η0) the solution x(λ, µ, η) is unique and satisfies the
Hölder condition

d
(
x(λ1, µ1, η1), x(λ2, µ2, η2)

) ≤ k1dγ /(β−θ)(µ1, µ2) + k2dαδ/β(λ1, λ2)

+ k3dζ ξ/(β−θ)(η1, η2),

where k1, k2, and k3 are positive constants depending on h, β, m, θ , l, α, etc.

Proof

Step 1 (uniqueness) Fix any (λ, µ, η) ∈ U(λ0) × V(µ0) × W(η0). If x̄ is a solution of
(EP), then ∃x̄∗ ∈ A(x̄, η), ∀y ∈ K(λ), F(x̄, y, x̄∗, µ) �⊆ −intC. So, for y �= x̄,

inf
x∗∈A(x̄,η)

inf
f∈F(x̄,y,x̄∗,µ)

d(f , Y\−intC) = 0.

Then, Assumption (A2a) implies that

F(y, x̄, A(y, η), µ) ⊆ −intC,

i.e. y is not a solution of (EP).

Step 2 We prove that

d1 := d
(
x(λ1, µ1, η1), x(λ1, µ2, η1)

) ≤
(m

h

)1/(β−θ)

dγ /(β−θ)(µ1, µ2). (5)

Let x(λ1, µ1, η1) �= x(λ1, µ2, η1) (if the equality holds then we are done). Since x∗
1 ∈

A(x(λ1, µ1, η1), η1) exists such that F
(
x(λ1, µ1, η1), x(λ1, µ2, η1), x∗

1, µ1
) �⊆ −intC one

has

inf
x∗∈A(x(λ1,µ1,η1),η1)

inf
f∈F(x(λ1,µ1,η1),x(λ1,µ2,η1),x∗,µ1)

d(f , Y\−intC) = 0.
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Assumption (A2a) implies that

hdβ

1 ≤ inf
x∗∈A(x(λ1,µ2,η1),η1)

inf
f∈F(x(λ1,µ2,η1),x(λ1,µ1,η1),x∗,µ1)

d(f , Y\−intC).

Hence, ∀z ∈ Y\−intC, ∀x∗ ∈ A(x(λ1, µ2, η1), η1),

dβ

1 ≤ 1
h

d
(

F
(
x(λ1, µ2, η1), x(λ1, µ1, η1), x∗, µ1

)
, z

)
. (6)

Since x(λ1, µ2, η1) is a solution of (EP), there are x∗
2 ∈ A(x(λ1, µ2, η1), η1), and z1 ∈

F(x(λ1, µ2, η1), x(λ1, µ1, η1), x∗
2, µ2)\−intC. If µ1 �= µ2 then inequality (6) and Assump-

tion (A1) together yield
dβ

1 ≤ m
h

dθ
1dγ (µ1, µ2).

Of course this inequality holds also when µ1 = µ2. Since β > θ , this implies (5).

Step 3 Now we show that

d2 := d
(
x(λ1, µ2, η1), x(λ2, µ2, η1)

) ≤
(

2nlδ

h

)1/β

dαδ/β(λ1, λ2). (7)

Let x(λ1, µ2, η1) �= x(λ2, µ2, η1). Thanks to (1) we have x′
1 ∈ K(λ1) and x′

2 ∈ K(λ2)

such that

d
(
x′

1, x(λ2, µ2, η1)
) ≤ ldα(λ1, λ2),

d
(
x(λ1, µ2, η1), x′

2
) ≤ ldα(λ1, λ2).

By the definition of (EP), x∗
3 ∈ A(x(λ1, µ2, η1), η1) and x∗

4 ∈ A(x(λ2, µ2, η1), η1) exist
such that one has

z2 ∈ F(x(λ1, µ2, η1), x′
1, x∗

3, µ2)\−intC,

z3 ∈ F(x(λ2, µ2, η1), x′
2, x∗

4, µ2)\−intC.

It follows from Assumption (A2a), (2) and (1) that

dβ

2 ≤ 1
h

inf
{
d(g, z2) : g ∈ F

(
x(λ1, µ2, η1), x(λ2, µ2, η1), x∗

3, µ2
)}

+ 1
h

inf
{
d(f , z3) : f ∈ F

(
x(λ2, µ2, η1), x(λ1, µ2, η1), x∗

4, µ2
)}

≤ n
h

(
dδ

(
x(λ2, µ2, η1), x′

1

) + dδ
(
x(λ1, µ2, η1), x′

2
))

≤ 2nlδ

h
dαδ(λ1, λ2),

i.e. one gets (7).

Step 4 We check the inequality

d3 := d
(
x(λ2, µ2, η1), x(λ2, µ2, η2)

) ≤
(

mpζ

h

)1/(β−θ)

dζ ξ/(β−θ)(η1, η2). (8)

As before we can assume that x(λ2, µ2, η1) �= x(λ2, µ2, η2). Since some x∗
5 ∈ A(x(λ2, µ2,

η1), η1) exists such that one can have

∃z4 ∈ F
(
x(λ2, µ2, η1), x(λ2, µ2, η2), x∗

4, µ2
)\−intC,
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one arrives at

inf
x∗∈A(x(λ2,µ2,η1),η1)

inf
f∈F(x(λ2,µ2,η1),x(λ2,µ2,η2),x∗,µ2))

d(f , Y\−intC) = 0.

Taking (A2a) into account, one sees that, ∀z ∈ Y\−intC, ∀x∗′ ∈ A
(
x(λ2, µ2, η2), η1

)
,

hdβ

3 ≤ inf
x∗∈A(x(λ2,µ2,η2),η1)

inf
f∈F(x(λ2,µ2,η2),x(λ2,µ2,η1),x∗,µ2)

d(f , Y\−intC)

≤ d
(
F(x(λ2, µ2, η2), x(λ2, µ2, η1), x∗′, µ2), z

)
. (9)

Since x(λ2, µ2, η2) is a solution of (EP), there are x∗
6 ∈ A(x(λ2, µ2, η2), η2) and

z4 ∈ F(x(λ2, µ2, η2), x(λ2, µ2, η1), x∗
6, µ2)\−intC.

By (3) there is x∗
7 ∈ A(x(λ2, µ2, η2), η1) such that

d(x∗
6, x∗

7) ≤ pdξ (η1, η2). (10)

If η1 �= η2, then inequality (9), Assumption (A1) and (10) together show that

hdβ

3 ≤ H
(

F
(
x(λ2, µ2, η2), x(λ2, µ2, η1), x∗

7, µ2
)
,

F(x(λ2, µ2, η2), x(λ2, µ2, η1), x∗
6, µ2)

)

≤ mdθ
(
x(λ2, µ2, η1), x(λ2, µ2, η2)

)
dζ

(
x∗

6, x∗
7
)

≤ mpζ dθ
3dζ ξ (η1, η2),

where H(., .) is the Hausdorff distance. This inequality holds also for η1 = η2. Since
β > θ , this implies (8).

Step 5 Finally, since

d
(
x(λ1, µ1, η1), x(λ2, µ2, η2)

) ≤ d1 + d2 + d3,

we get the conclusion of the theorem with k1 = (m
h

)1/(β−θ), k2 = ( 2nlδ
h

)1/β, and

k3 = (mpζ

h

)1/(β−θ). ��
Observe that all assumptions but (A2a) are about Hölder continuity of the data

of problem (EP) and so are natural to ensure a Hölder continuity of the solution.
Assumption (A2a) is also Hölder-related and cannot be omitted as shown by the
following example, similarly as for the corresponding assumption in Anh and Khanh
(2006).

Example 2.1 Let X = Y = Z = R, Λ ≡ M ≡ N = [1, 2], C = R+, K(λ) = [λ − 1, 1],
A(x, λ) = [λ, |x| + λ] and

F(x, y, x∗, λ) = (−∞, |λx|1/2x∗(|x|1/4 − y)].
Then K(.) is 1.1—Hölder in Λ; ∀λ ∈ Λ, ∀x ∈ K(λ), ∀x∗ ∈ A(x, λ), F(x, ., x∗, λ)

is 3
√

2.1—Hölder in K(λ); ∀λ ∈ Λ, ∀x ∈ K(λ), A(x, .) is 1.1—Hölder at λ and
Assumption (A1) is satisfied with m = 3, ζ = 1, γ = 1

2 and θ = 0. We indicate
that the remaining assumption (A2a) is violated. Taking λ = 1, x1 = 1, y = 0,
x∗ = 1 ∈ A(1, 1) = [1, 2], y∗ = 1 ∈ A(0, 1) = {1} we have F(1, 0, 1, 1) = (−∞, 1]
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and F(0, 1, 1, 1) = (−∞, 0]. So the right-hand side of (2) in this case is equal to 0, i.e.
(2) is violated. Easy calculations give the following solution set S(λ) of (EP):

S(λ) =
{ {1}, if 1 < λ ≤ 2,

{0, 1}, if λ = 1.

So the solutions are not unique at λ = 1 and S(.) is even not lower semicontinuous at
λ = 1.

Theorem 2.2 For problem (SEP) assume all the assumptions as for problems (EP)
with the only change that Assumption (A2a) is replaced by (A2b). Then the solution
of (SEP) is unique and satisfies the same Hölder condition as in Theorem 2.1.

We omit the proof since the technique is similar as that for Theorem 2.1 with
suitable modifications. The following example indicates that (A2b) is essential.

Example 2.2 Let X, Y, Z, Λ, M, N, C, K, and A be as in Example 2.1. Let

F(x, y, x∗, λ) = [λ1/2xx∗(x − y2), +∞).

Then all assumptions but (A2b) are satisfied. Direct computations supply the solution
set S(λ) of problems (SEP) as

S(λ) =
{ {0, 1}, if λ = 1,

{1}, if 1 < λ ≤ 2.

So the solutions are not unique at λ = 1 and S(.) is even not lower semicontinuous at
this point. Picking λ0 = 1, x = 1, y = 0, x∗ = 1, y∗ = 1 we see that the right-hand side
of (3) is 0 and hence (A2b) is not satisfied.

Remark 2.1 (1) A question arises that can Assumption (1) of Theorems 2.1 and 2.2 be
reduced to K(.) being l.α—pseudo-Hölder at

(
λ0, x(λ0, µ0, η0)

)
, i.e. there exist neigh-

borhoods U(λ0) of λ0 and P of the solution x(λ0, µ0, η0) such that, ∀λ1, λ2 ∈ U(λ0),

K(λ1) ∩ P ⊆ K(λ2) + lB(0, dα
(
λ1, λ2)

)
. (11)

Note that if α = 1, this property is called pseudo-Lipschitz property or Aubin property
(see Aubin and Frankowska 1990), and plays important role in multivalued analysis.
The following example gives a negative answer to this question.

Example 2.3 Let X = Y = Z = R, Λ ≡ M ≡ N = [−1, 1], C = R+, A(x, λ) = [0, λ],
λ0 = 0 and

K(λ) =
{ [−1, 2], if λ = 0,

[0, 1
|λ| ], otherwise,

F(x, y, x∗, λ) = {(λ + 2)(x − y)}.
It is not hard to see that all Assumptions (A1), (A2a), (2) and (3) are satisfied.
Furthermore, K(.) is pseudo-Lipschitz at λ0 = 0 and x(0) = 2 (taking P = (0, 4),
U(λ0) = (− 1

2 , 1
2 )). But some computations give the solution

x(λ) =
{ {2}, if λ = 0,

{ 1
λ
}, if 0 < λ ≤ 1,

which is discontinuous at λ0 = 0.
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(2) If we impose the additional assumptions that K(.) is continuous and K(λ0) is
compact, that A(., η0) is upper semicontinuous (usc for short) and has compact val-
ues in K(λ0) × {η0} and that F(., ., ., µ0) is usc in K(λ0) × K(λ0) × A

(
K(λ0), η0

)
, then

Assumption (1) of Theorems 2.1 and 2.2 can be reduced to the mentioned pseudo-
Hölder property. Indeed, by Assumption (A2a) and Theorem 3.1 of Anh and Khanh
(2006, in press) we derive that the unique solution x(., ., .) is usc at (λ0, µ0, η0). Since
K(.) is l.α—pseudo-Hölder at

(
λ0, x(λ0, µ0, η0)

)
we have (11). By the upper semiconti-

nuity of x(., ., .) at (λ0, µ0, η0) we can assume that x(λ1, µ2, η1) and x(λ2, µ2, η1) belong
to P. Therefore (11) can be used instead of Assumption (1) in Step 3 of the proof
of Theorem 2.1. (Assumption (1) is needed only in Step 3). It is similar for problem
(SEP).

Remark 2.2 If A(x, η) ≡ {z0} with some fixed z0 ∈ Z, our problems (EP) and (SEP)
become the corresponding problems investigated in Anh and Khanh (2006). Setting
F(x, y, z0, µ) := F(x, y, µ) we obtain the consequences of Theorems 2.1 and 2.2.

Corollary 2.3 For (EP) assume that solutions exist in a neighborhood of (λ0, µ0).
Assume (1) of Theorem 2.1 and further that there are neighborhoods U(λ0) and V(µ0)

of λ0 and µ0 such that

(A1) ∀λ ∈ U(λ0), ∀µ1, µ2 ∈ V(µ0), ∀x, y ∈ K(λ) : x �= y,

F(x, y, µ1) ⊆ F(x, y, µ2) + mB
(
0, dθ (x, y)dγ (µ1, µ2)

)
,

where m > 0, θ ≥ 0 and γ > 0.

(A2a) ∀µ ∈ V(µ0), ∀x, y ∈ K
(
U(λ0)

)
: x �= y,

hdβ(x, y) ≤ inf
g∈F(x,y,µ)

d(g, Y\−intC) + inf
f∈F(y,x,µ)

d(f , Y\−intC),

where h > 0 and β > θ ;

(2) ∀(λ, µ) ∈ U(λ0) × V(µ0), ∀x ∈ K(λ), F(x, ., µ) is n.δ—Hölder in K(U(λ0)).
Then, in a neighborhood of (λ0, µ0), the solution x(λ, µ) is unique and satisfies the

Hölder condition

d
(
x(λ1, µ1), x(λ2, µ2)

) ≤ k1dγ /(β−θ)(µ1, µ2) + k2dαδ/β(λ1, λ2)

for some k1 and k2 > 0 depending on parameters involved in the assumptions.

Corollary 2.4 For (SEP) assume the solution existence and (1), (A1) and (2) as in
Corollary 2.3 and replace (A2a) by

(A2b) ∀µ ∈ V(µ0), ∀x, y ∈ K
(
U(λ0)

)
: x �= y,

hdβ(x, y) ≤ sup
g∈F(x,y,µ)

d(g, Y\−intC) + sup
f∈F(y,x,µ)

d(f , Y\−intC),

where h > 0 and β > θ .
Then we have the same conclusion as that of Corollary 2.3.

Remark 2.3 Corollaries 2.3 and 2.4 remarkably sharpen Theorems 2.1 and 2.2 of Anh
and Khanh (2006) since

(a) assumptions (A2a) and (A2b) are strictly weaker than the corresponding assump-
tions (2) and (2′) of the mentioned results (see Proposition 1.1 and Example 1.1
of this paper);
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(b) for θ > 0 the conclusions here are properly stronger as the greater degree is, the
stronger Hölder continuity is. Furthermore, Assumption (A1) does not impose
any condition when x = y. This also makes Corollaries 2.3 and 2.4 applicable
in some cases where Theorems 2.1 and 2.2 of Anh and Khanh (2006) cannot be
employed as shown by the following Examples 2.4 and 2.5, respectively.

Example 2.4 Let X = Y = R, Λ ≡ M = [0, π ], C = R+, K(λ) = [λ, π], λ0 = 0 and

F(x, y, λ) =






[−1, 1], if x = y, λ = 0,
(−∞, 0], if x = y, λ �= 0,{
(y − x)tan

(
x + λ + π

12

)}
, otherwise.

Then it is not hard to see that K(.) is 1.1—Hölder at λ, ∀λ ∈ [0, π]; Assumption (A2a)
is fulfilled with h = 4√

3+2
and β = 2; (2) is satisfied with n = δ = 1 and (A1) is satisfied

with m = 2 and θ = γ = 1. Thus, Corollary 2.3 is applicable. However F(x, y, .) is not
Hölder at 0 (for any degree) and hence the mentioned Theorem 2.1 does not work.

Example 2.5 Let X = Y = R, Λ ≡ M = [0, 1], C = R+, K(λ) = [λ, λ + 1], λ0 = 0

F(x, y, λ) =





[0, 1], if x = y, λ = 0,
[0, +∞), if x = y, λ �= 0,
{(y − x) ln(ex+λ + 1)}, otherwise.

Then (1) is satisfied with l = α = 1, (A2b)-with h = 1
2 and β = 2, (2)-with n = ln(e3+1)

and δ = 1 and (A1)-with m = θ = γ = 1. Thus, Corollary 2.4 can be used, but the
encountered Theorem 2.2 cannot, by the same reason as above.

The following example gives a case where Corollary 2.3 works but Theorem 2.1 of
Anh and Khanh (2006) does not, because of its assumption (ii) being not satisfied.

Example 2.6 Let X, Y, Λ, M, and C be as in Example 2.5. Let K(λ) = [0, λ] and
F(x, y, λ) = [−x − y − λ, −x]. Then all assumptions of Corollary 2.3 are satisfied, but
F(., ., λ) is not Hölder-strongly pseudomonotone as required in the mentioned assump-
tion (2). Direct computations show that the solution set is S(λ) = {0}, ∀λ ∈ [0, 1] and
hence the unique solution is Hölder of any degree.

Note that, the results of Bianchi and Pini (2003) clearly also fail to be applied in
Examples 2.4–2.6.

Remark 2.4 When we almost completed the preparation of this paper we found
Mansour and Riahi (2005) with similar results. Namely, this paper considers the spe-
cial case of Anh and Khanh (2006), where Y = R and F : X × X × M → R is
single-valued. Then (EP) and (SEP) coincide. Our Corollary 2.3 (or 2.4) is properly
stronger than the result (Theorem 2.2.1) of Mansour and Riahi (2005), since Assump-
tion (A2a) is more relaxed than the strongly monotonicity assumed in Theorem 2.2.1;
(A1) is also more relaxed than the corresponding assumption there, since the case
x = y is not involved; and finally, our all assumptions are imposed on x, y in K

(
U(λ0)

)

not globally. The following examples supply cases where Corollaries 2.3 and 2.4 can
be applied but the mentioned Theorem 2.2.1 cannot.
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Example 2.7 Let X = Y = Λ ≡ M = R, C = R+, K(λ) = [λ, λ + 1], λ0 = 1 and
F(x, y, λ) = {λ(x2 − y2)}. Then (A1) is satisfied with U(λ0) = (0, 2), θ = γ = 1, m = 6.
(A2a) holds with h = β = 2 and (2) with n = 12 and δ = 1. So Corollary 2.3 is
applied. However, F(., ., λ) is not globally strongly monotone. Indeed, for x = λ0 and
y = −λ0, F(x, y, λ0) = 0 and F(y, x, λ0) = 0 �< −d(λ, −λ) = −2λ. Thus, the result of
Mansour and Riahi (2005) fails to be employed.

Example 2.8 Let X = Y = R, Λ ≡ M = [0, π ], C = R+, K(λ) = [λ, π], λ0 = 0 and

F(x, y, λ) =






{0}, if x = y, λ = 0,

tan
π − x

2
, if x = y, λ �= 0,

(y − x) tan
x + λ + π

12
, otherwise.

Then (A1) holds with m = 2, θ = γ = 1, (2) with n = δ = 1. In this case, ∀λ ∈ [0, π],
F(., ., λ) is even Hölder strongly monotone in K(λ) with h = 4√

3+2
and β = 2. Then

Corollary 2.3 is applicable but Mansour and Riahi (2005) is not, since F(x, y, .) does
not satisfy assumption (H3) there about Hölder continuity

(
corresponding to our

(A1)
)
.

3 Particular cases

We will now apply the main results in Sect. 2 to some particular problems of impor-
tance.

3.1 Lower and upper bounded equilibrium problems

Consider the following problem of Chadli et al. (2002) and Congjun (2006), for
(λ, µ) ∈ Λ × M,

(BEP) Find x̄ ∈ K(λ), ∀y ∈ K(λ), α ≤ F(x̄, y, µ) ≤ β,

where K: Λ → 2X , F: X × X × M → R, α, β ∈ R : α < β.

Setting Y = R, C = (−∞, −β]∪ [−α, +∞), (EP)
(
or (SEP)

)
becomes (BEP). Then

our Corollary 2.3 (and, the same, Corollary 2.4) becomes a new result for (BEP).

3.2 Multivalued variational inequalities

In this section, if not otherwise stated, let X be a reflexive Banach space, N and Λ be
metric linear spaces, K: Λ → 2X and A: X × N → 2X∗

be multifunctions with K(λ)

being closed and convex, ∀λ ∈ Λ. For each (λ, η) ∈ Λ × N consider the variational
inequality problem

(VI) Find x̄ ∈ K(λ) such that ∃t̄ ∈ A(x̄, η), ∀y ∈ K(λ),

〈t̄, y − x̄〉 ≥ 0.

We need some preliminaries. Let X and Z be Banach spaces. A multifunction
A: X → 2X∗

is said to be monotone if, ∀x, y ∈ X, ∀u ∈ Ax, ∀v ∈ Ay, 〈u − v, x − y〉 ≥ 0.
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A is called strongly monotone if there is α > 0 such that ∀x, y ∈ X, ∀u ∈ Ax, ∀v ∈ Ay,

〈u − v, x − y〉 ≥ α‖x − y‖2.

A : X → 2X∗
is called maximal monotone if A is monotone and no enlargement

of graphA is possible without destroying monotonicity, i.e. if A is monotone and
∀(x, u) ∈ graphA,

〈u − v, x − y〉 ≥ 0,

then (y, v) ∈ graphA.
A mapping B: X → 2Z is termed locally bounded at x ∈ X if there is a neighbor-

hood U of x such that B(U) is bounded. B is locally bounded on the subset D if B is
locally bounded at each point of D. As usual any property is extended from a point
to a subset in this way.

A: X → 2X∗
is called demicontinuous at x ∈ X if A is upper semicontinuous at

x, considering X with the norm topology and X∗ with the star-weak topology. It is
known (see Kluge 1979), Lemma 2.13, that if A is monotone, demicontinuous and
A(x) is closed and convex, ∀x ∈ X, then A is maximal monotone.

To convert (VI) to a special case of (EP) set Z = X∗, Y = R, C = R+, and
F(x, y, x∗) = 〈x∗, y − x〉.
Corollary 3.1 For (VI) assume the existence a neighborhood U(λ0)×W(η0) of (λ0, η0) ∈
Λ × N such that

(A2a) ∀η ∈ W(η0), ∀x, y ∈ K
(
U(λ0)

)
: x �= y,

h‖x − y‖β ≤ inf
g∈〈A(x,η),y−x〉 d(g, R+) + inf

f∈〈A(y,η),x−y〉
d(f , R+);

(1) there is a neighborhood P of the solution x(λ0, η0) such that, ∀λ, λ′ ∈ U(λ0),

K(λ) ∩ P ⊆ K(λ′) + lB
(
0, dα(λ, λ′)

)

(i.e. K(.) is l.α—pseudo-Hölder at λ0);
(3) ∀λ ∈ U(λ0), ∀x ∈ K(λ), A(x, .) is p.ξ—Hölder at η0;
(4) A(., .) is locally bounded in K

(
U(λ0)

) × {η0};
(5) ∀η ∈ W(η0), A(., η) is maximal monotone.

Then, in a neighborhood of (λ0, η0), the solution x(λ, η) of (VI) is unique and satisfies
the Hölder condition

‖x(λ1, η1) − x(λ2, η2)‖ ≤ k1‖λ1 − λ2‖α/β + k2‖η1 − η2‖ξ/(β−1).

Proof To apply Theorem 2.1 we need to prove

(a) all assumptions of Theorem 2.1 are satisfied, except (1);
(b) in this case the assumed pseudo-Hölder property in (1) is enough to replace

the Hölder property, since there are neighborhoods U of x(λ0, η0), B(λ0, r) and
Û(η0) of η0 such that, ∀(λ, η) ∈ B(λ0, r) × Û(η0), x(λ, η) ∈ U;

(c) solutions of (VI) exist in a neighborhood of (λ0, η0).

We prove first (b). Set x0 = x(λ0, η0) and choose positive r1 and r such that
B(x0, r1) ⊆ P, B(λ0, r) ⊆ U(λ0) and lrα ≤ r1. By (1), ∀λ ∈ B(λ0, r), ∃xλ ∈ K(λ),

‖x0 − xλ‖ ≤ ldα(λ0, λ) ≤ lrα ≤ r1.
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Hence K(λ) ∩ B(x0, r1) is (closed, convex and) nonempty. For η ∈ W(η0) consider the
multifunction

x �→ A(x, η) + NK(λ)∩B(x0,r1)(x), (12)

where NS(.) is the normal cone to a convex set S at (.). Since NS(.) is maximal mono-
tone (see, e.g. Zeidler 1990, Example 32.15) and so is A(., η), by Rockafellar (1970),
the multifunction (12) is maximal monotone with bounded domain K(λ) ∩ B(x0, r1).
Therefore, by Zeidler (1990), Corollary 32.35, the multifunction (12) is onto. Conse-
quently, there is x̂(λ, η) ∈ K(λ) ∩ B(x0, r1) such that

0 ∈ A
(
x̂(λ, η), η

) + NK(λ)∩B(x0,r1)

(
x̂(λ, η)

)
. (13)

We claim that

NK(λ)∩B(x0,r1)

(
x̂(λ, η)

) = NK(λ)

(
x̂(λ, η)

)
. (14)

To check this we show first that, for (λ, η) close enough to (λ0, η0), x̂(λ, η) ∈ intB(x0, r1).
Since x̂(λ, η) ∈ B(x0, r1) ⊆ P, (1) implies the existence of x̂0 ∈ K(λ0) with ‖x̂(λ, η)−

x̂0‖ ≤ ldα(λ, λ0). Similarly, ∃xλ ∈ K(λ) ∩ B(x0, r1), d(x0, xλ) ≤ ldα(λ, λ0). On the other
hand, by (4), for (λ, η) in a neighborhood of (λ0, η0), there is q > 0 such that

sup
{‖t‖ : t ∈ A

(
x̂(λ, η), η

)} ≤ q,

sup
{‖t0‖ : t0 ∈ A(x0, η0)

} ≤ q.

Since x0 is a solution of (VI) and x̂(λ, η) is a solution of (VI) restricted to K(λ) ∩
B(x0, r1), we have

∃ẑ ∈ A
(
x̂(λ, η), η

)
, 〈ẑ, xλ − x̂(λ, η)〉 ≥ 0,

∃z0 ∈ A(x0, η0), 〈z0, x̂0 − x0〉 ≥ 0.

It follows from assumption (A2a) that

h‖x̂(λ, η) − x0‖β ≤ inf
g∈〈A(x̂(λ,η),η),x0−x̂(λ,η)〉

d
(
g, 〈ẑ, xλ − x̂(λ, η)〉)

+ inf
f∈〈A(x0,η0),x̂(λ,η)−x0〉

d
(
f , 〈z0, x̂0 − x0〉

)

≤ H
(〈A (

x̂(λ, η), η
)
, x0 − x̂(λ, η)〉, 〈A (

x̂(λ, η), η
)

, xλ − x̂(λ, η)〉)

+H
(〈A(x0, η0), x̂0 − x0〉, 〈A(x0, η0), x̂(λ, η) − x0〉

)

≤ sup
{‖t‖ : t ∈ A

(
x̂(λ, η), η

)} ‖x0 − xλ‖
+ sup {‖t0‖ : t0 ∈ A(x0, η0)} ‖x̂0 − x̂(λ, η)‖

≤ 2qldα(λ, λ0).

Hence for (λ, η) close to (λ0, η0), x̂(λ, η) ∈ intB(x0, r1). Returning back to (14) we
see that the inclusion ⊇ is clear. For the opposite inclusion take arbitrarily v on the
left-hand side and z ∈ K(λ). As x̂(λ, η) ∈ intB(x0, r1), there is ε > 0 such that

zα := x̂(λ, η) + ε(z − x) ∈ K(λ) ∩ B(x0, r1)

and hence

〈v, z − x̂(λ, η)〉 =
〈
v,

1
ε
(zα − x̂(λ, η))

〉
≤ 0,
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i.e. v ∈ NK(λ)

(
x̂(λ, η)

)
. Thus (14) follows and (13) shows that x̂(λ, η) is a solution

of (VI). By Assumption (A2a), the solution x(λ, η) of (VI) is locally unique. So
x̂(λ, η) = x(λ, η) and we have proved (b) with U = B(x0, r1).

(c) The solution existence of (VI) has been demonstrated in (b).
(a) We have seen above that, due to Assumption (4), Assumption (2) of Theorem

2.1 is fulfilled with n = 2q and δ = 1. (3) of Theorem 2.1 is the same (3) here. Finally
(A1) of Theorem 2.1 is clearly satisfied with m = θ = ζ = 1. Applying Theorem 2.1
completes the proof of the corollary. ��
Corollary 3.2 For (VI) assume that x0 := x(λ0, η0) is a solution of (VI) at (λ0, η0) and
that there is a neighborhood U(λ0) × W(η0) of (λ0, η0) such that
(A2) A(., η) is strongly monotone for each η ∈ W(η0);

(1) K(.) is pseudo-Lipschitz in U(λ0);
(2) A(., .) is Lipschitz in P(x0) × W(η0).

Then, in a neighborhood of (λ0, η0), the solution of (VI) satisfies the Hölder condition

‖x(λ1, η1) − x(λ2, η2)‖ ≤ k1d1/2(λ1, λ2) + k2d(η1, η2).

Proof We check the assumptions of Corollary 3.1. (1) holds with α = 1. (A2a) is
satisfied with β = 2 by (A2). (3) is fulfilled with γ = 1 by (3) of Corollary 3.2. (4)
follows from (3) of this corollary. Finally, since A(., .) is single-valued and A(., η) is
monotone and demicontinuous, A(., η) is maximal monotone by the above-mentioned
Lemma 2.13 of Kluge (1979). ��

If X is a Hilbert space Corollary 3.2 collapses to Theorem 2.1 of Yen (1995).

3.3 A fixed point problem

In Sects. 3.3 and 3.4 let X be a Hilbert space, N be a metric linear space and A :
X × N → 2X be a multifunction. For each η ∈ N, consider the fixed point problem:

(FP) Find x̄ ∈ X, such that

x̄ ∈ A(x̄, η).

Setting X = Z, Y = R, C = R+, K(λ) ≡ X and

F(x, y, x∗) := 〈x − x∗, y − x〉
(FP) becomes the following special case of (EP):

(EP1) Find x̄ ∈ X, x̄∗ ∈ A(x̄, η) such that, ∀y ∈ X,

〈x̄ − x̄∗, y − x̄〉 ≥ 0. (15)

Indeed, if x̄ is a solution of (FP), i.e. x̄ ∈ A(x̄, η). Taking x̄∗ = x̄ we see that x̄ is a
solution of (EP1). Conversely, if x̄ is a solution of (EP1). Putting y = x̄∗ in (15) we
obtain ‖x̄ − x̄∗‖ = 0, i.e. x̄ is a solution of (FP).

From Theorem 2.1 we derive

Corollary 3.3 For problem (FP) assume the existence of a neighborhood W(η0) of η0
such that fixed points of A(., η) exists in W(η0) and that

(A2a) ∀η ∈ W(η0), ∀x, y ∈ X : x �= y,

h‖x − y‖β ≤ inf
g∈〈x−A(x,η),y−x〉 d(g, R+) + inf

f∈〈y−A(y,η),x−y〉
d(f , R+)
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for some h > 0 and β > 1;

(3) ∀x ∈ X, A(x, .) is p.ξ—Hölder at η0, for p > 0 and ξ > 0;

(4) multifunction (x, η) �→ x − A(x, η) is locally bounded in X × {η0}.
Then, in a neighborhood of η0, the fixed point x(η) of A(., η) is unique and satisfies the
Hölder condition

‖x(η1) − x(η2)‖ ≤ kdξ/(β−1)(η1, η2)

for some k > 0.

Proof To check the assumptions of Theorem 2.1 we see that (A1) is clearly satisfied
with m = θ = ζ = 1 and (2) is satisfied with δ = 1 by Assumption (4) here. ��
3.4 A coincidence point problem

Let X and N be as in Sect. 3.3 and f , g: X × N → 2X be multifunctions. For each
η ∈ N, consider the coincidence point problem:

(CP) Find (x1, x2) ∈ X × X such that x1 ∈ f (x2, η), x2 ∈ g(x1, η).

To restate (CP) as a particular case of (EP) we set X1 = X × X, Z = X1, Y = R,
C = R+, A: X1 × N → 2X1 being defined by

A(x, η) = f (x2, η) × g(x1, η)

and F: X1 × X1 × X1 × N → R by

F(x, y, x∗) := 〈x1 − x∗1, y1 − x1〉 + 〈x2 − x∗2, y2 − x2〉. (16)

Then it is not hard to see that (CP) is equivalent to the problem:

(EP2) Find x̄ = (x̄1, x̄2) ∈ X1 and x̄∗ = (x̄∗1, x̄∗2) ∈ f (x̄2, η) × g(x̄1, η) such that,
∀y = (y1, y2) ∈ X1,

〈x̄1 − x̄∗1, y1 − x̄1〉 + 〈x̄2 − x̄∗2, y2 − x̄2〉 ≥ 0.

Corollary 3.4 Assume that there is a neighborhood W(η0) of η0 such that there is a
coincidence point

(
x1(η), x2(η)

)
, ∀η ∈ W(η0). Assume (3) and (4) as in Corollary 3.3.

Assume further

(A2a) ∀η ∈ W(η0), ∀x, y ∈ X : x �= y, F(x, y, x∗) defined by (16) satisfies assumption
(A2a) in Sect. 2;

Then, in a neighborhood of η0, the coincidence point
(
x1(η), x2(η)

)
of f (., η) and g(., η)

is unique and satisfies the Hölder condition

‖x(η1), x(η2)‖ ≤ kdξ/(β−1)(η1, η2),

for some k > 0.

3.5 A vector optimization problem

Let X, Y, Λ, N, C, and K be as for problem (EP) in Sect. 1 and A: X × N → 2Y be a
multifunction. For each (λ, η) ∈ Λ × N, consider the following problem of

(VOP) finding x̄ ∈ K(λ) and x̄∗ ∈ A(x̄, η) such that, ∀y ∈ K(λ),

A(y, η) − x̄∗ ⊆ Y\−intC.
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Recall that such a point x̄ is said to be a weak minimizer and x̄∗ is a weak minimum
of the vector optimization problem

min A(y, η), s.t. y ∈ K(λ).

To convert (VOP) to a special case of (SEP) we simply set Z = Y, M ≡ N and
F(x, y, x∗, η) := A(y, η) − x∗. Then, from Theorem 2.2 we have (cf. also the proof of
Theorem 2.1)

Corollary 3.5 For (VOP) assume that solutions exist in a neighborhood of (λ0, η0) ∈
Λ × N. Assume further that there are neighborhoods U(λ0) of λ0 and W(η0) of η0 such
that

(A1) ∀λ ∈ U(λ0), ∀η1, η2 ∈ W(η0), ∀y ∈ K(λ), ∀x∗
1, x∗

2 ∈ A
(
K(λ), W(η0)

)
,

A(y, η1) − x∗
1 ⊆ A(y, η2) − x∗

2 + m‖y‖θ B
(
0, ‖x∗

1 − x∗
2‖ + dγ (η1, η2)

)
,

where m > 0, θ ≥ 0 and γ > 0;

(A2b) ∀η ∈ W(η0), ∀x, y ∈ K(U(λ0)) : x �= y,

hdβ(x, y) ≤ inf
x∗∈A(x,η)

sup
g∈A(y,η)−x∗

d(g, Y\−intC)

+ inf
y∗∈A(y,η)

sup
f∈A(x,η)−y∗

d(f , Y\−intC)

for h > 0 and β > θ ;

(1) K(.) is l.α—Hölder at λ0 with l > 0 and α > 0;
(2) ∀η ∈ W(η0), A(., η) is n.δ—Hölder in K(U(λ0));
(3) ∀λ ∈ U(λ0), ∀y ∈ K(λ), A(y, .) is p.ξ Hölder at η0.

Then, in a neighborhood of (λ0, η0), the solution x(λ, η) of (VOP) is unique and satisfies
the Hölder condition

d(x(λ1, η1), x(λ2, η2)) ≤ k1dαδ/β(λ1, λ2) + k2dτ/(β−θ)(η1, η2),

where τ := min{γ , ξ}, k1 and k2 are positive constants depending on h, β, m, θ , etc.
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